Российское образование мирового класса!

Цель Проекта 5-100 – максимизация конкурентной позиции группы ведущих российских университетов на глобальном рынке образовательных услуг и исследовательских программ.

НОВОСТИ


Энергетика будущего

22 сентября 2020 года

Тренд на возобновляемую энергетику становится всё более очевидным в масштабах планеты. Он необходим, чтобы уменьшить негативное влияние продуктов переработки углеводородов на окружающую среду. На долю солнечной и ветровой энергетики уже приходится около 8 процентов мирового потребления электроэнергии.

В России с 2014 года работает государственная программа «Развитие энергетики», в рамках которой предусмотрены долгосрочные стратегии развития отрасли на основе возобновляемых источников (ВИЭ). Это ветроэнергетика, солнечная энергетика, геотермальная энергетика. Также предполагается строительство объектов генерации на основе ВИЭ и производство оборудования для альтернативной энергетики.

Научные центры вносят существенный вклад в развитие прорывных экологичных разработок согласно Стратегии научно-технологического развития РФ.

Представляем дайджест достижений вузов, входящих в Проект 5-100, которые еще на шаг приближают нас к эре альтернативной энергетики.

В Дальневосточном федеральном университете установили закономерности влияния формы тепловых аккумуляторов на их эффективность.

Ученые Дальневосточного федерального университета (ДВФУ) и Института автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) провели серию экспериментов, в ходе которых удалось установить корреляцию между формой теплового аккумулятора и его эффективностью. Благодаря новым сведениям удастся модифицировать устройства накопления энергии и сделать их более производительными и экономически выгодными.

В исследовании рассматривались тепловые накопители, которые применяются в прогрессивных энергетических системах. При нагревании гранулы активного вещества плавятся, тепловая энергия (газ) накапливается. Но при остывании снова происходит переход в твердое состояние, и газ высвобождается.

vega8.jpg

Фото: zimaletostroy.ru

«Исследуя процессы зарядки и разрядки тепловых аккумуляторов разных форм, мы применили шесть различных критериев эффективности, – объясняет профессор Инженерного департамента Политехнического института ДВФУ, заведующий лабораторией ИАПУ ДВО РАН Николай Луценко, – иногда наиболее предпочтительным может быть такой аккумулятор, в котором сохранится как можно больше проходящей через него энергии. В другом случае может понадобиться аккумулятор с наименьшим временем зарядки. Также в случае разрядки кому-то требуется аккумулятор, который отдает наибольший процент запасенной энергии, а для других может оказаться более полезным аккумулятор, поддерживающий максимально долго температуру газа на выходе не ниже требуемой».

С помощью специальной компьютерной программы ученые просчитали, что из-за постоянных смен нагрева и охлаждения, а как следствие расширения и сужения аккумуляторов, бóльшим преимуществом обладают цилиндрические накопители с прямыми стенками. Но для отдельных случаев и специальных условий может быть предпочтительной и другая форма аккумулятора.

Накопители тепловой энергии входят в состав аккумуляторов разных типов. Они необходимы, чтобы запасать энергию от традиционных электростанций ночью или же солнечных батарей и ветрогенераторов днем, которая будет отдаваться в моменты самого высокого потребления по более низкой цене.

Над проблемой «Как получить более дешевую энергию максимально эффективно?» также борются ученые из ИТМО. Они совместно с НПЦ «Прецизионная электромеханика» и Лабораторией гибридной нанофотоники и оптоэлектроники (Perolab) реализуют междисциплинарный проект по развертыванию «умной» микроэнергетической системы.

умное окно.jpg

Фото: Модуль умного окна / Николай Поляков (ИТМО)

Процессы урбанизации и диджитализации значительно увеличивают нагрузку на городские электросети. Что закономерно ведет к сбоям в системе. Даже выход из строя одного элемента может повлечь за собой масштабные негативные последствия.

Чтобы предвосхитить нежелательные события и разгрузить городские системы, специалистами было предложено новое направление – «умное» управление энергообеспечением.

«У каждой системы есть циклограмма потребления энергии, – объясняет доцент факультета систем управления и робототехники Университета ИТМО Николай Поляков. – Возьмем, к примеру, офисное здание. Туда все приходят более или менее одновременно, включают компьютеры, ставят чайники – в этот момент в здании резко возрастает потребление энергии. Вскоре этот пик может сгладиться, ведь кто-то начнет активно работать, а кто-то уедет по делам, кто-то выскочит за кофе, кто-то пойдет на совещание. Тем не менее при проектировании традиционной системы всегда приходится делать расчет системы из условия работы на уровне пиковой нагрузки сети».

Логично, что это в итоге ведет к удорожанию всей энергетической инфраструктуры. К сожалению, нельзя просто из соображений экономии снижать выработку энергии к обеду.

Ученые ИТМО предлагают переход на микроэнергетические системы для отдельных зданий, которые могут в течение дня уменьшить нагрузку на инфраструктуру, адаптируясь под скачки энергопотребления. В данный момент специалисты собирают экспериментальные образцы «умных» силовых преобразователей для микроэнергетической системы общей мощностью 15 кВт – столько потребляет среднестатистический частный дом.

Предполагается, что комплекс интеллектуальных силовых преобразователей с накопителями энергии, датчиками и «умными» контроллерами будет анализировать выработку энергии в течение дня, чтобы в момент пиковой нагрузки в здании выйти на свою максимальную производительность, таким образом разгружая городскую сеть. Идеально с точки зрения экологии и эффективности система будет работать в комплекте с солнечной батареей или ветрогенератором, которые могут аккумулировать энергию в своих накопителях, отдавая ее в нужный момент.

Еще одна уникальная разработка Лаборатории гибридной нанофотоники и оптоэлектроники ИТМО – модули умного окна. Как объяснил Николай Поляков: «Такое устройство должно выполнять три функции: пропускать солнечный свет как обычное окно, преобразовывать солнечный свет в электричество в дневное время суток и работать как светоизлучающий прибор с мягким диффузионным светом вечером и ночью, по желанию пользователя».

Главное в гибридных системах нового поколения – возможность контролировать и оптимизировать потоки энергии на принципиально ином уровне – в сочетании с альтернативными источниками и собственными накопителями. Если в будущем такими системами будут снабжены отдельные дома, скажем, одного поселка, то они смогут сохранить такой резерв мощности, что снизят энергопотребление всей инфраструктуры. Например, ветрогенераторы могут накопить энергию ночью, по дешевому тарифу, а расходовать ее днем. Или же электричество от умного окна сможет поступить в общую сеть через солнечный инвертор (еще одна разработка ученых ИТМО). В дополнение к вышесказанному «умные» системы в целом увеличат надежность системы электроснабжения.

ветряк.jpg
Фото: altenergiya.ru

В «ЛЭТИ» тоже давно ведутся разработки с использованием солнечной энергетики: это и солнечные панели, и системы питания дронов и роботов, и «умные» системы освещения. На кафедре фотоники СПбГЭТУ регулярно проводят исследования по увеличению эффективности и снижению себестоимости различных солнечных элементов. Так, ученые «ЛЭТИ» предлагают внедрять солнечные электростанции на основе гибридных и мультикаскадных сложных систем на удаленные объекты и дома, не подключенные к центральной электросети.

На прошедшем 5 сентября в Гатчине Всероссийском фестивале энергосбережения и экологии «Вместе Ярче» были представлены лучшие изобретения и опытные образцы из Санкт-Петербургского государственного электротехнического университета.

«Мы представили одни из самых современных солнечных панелей мирового уровня, выполненные по технологии HJT производства компании „Хэвел“, сотрудниками которой являются многие выпускники СПбГЭТУ „ЛЭТИ“. Такие панели позволяют вырабатывать солнечную энергию даже в пасмурную погоду. Мы показали наши самые важные с практической точки зрения разработки: энергетическую мини-электростанцию на основе солнечных элементов, воздушные и наземные дроны, питаемые от солнечных панелей, „солнечные“ фонари и другие разработки», – поделился ассистент кафедры фотоники СПбГЭТУ «ЛЭТИ» Иван Игоревич Михайлов.

Важно отметить, что, кроме разработки передовых технологий в солнечной энергетике, университеты Проекта 5-100 занимаются обучением и повышением квалификации кадров для этой области. На базе ДВФУ давно существует Центр энергоэффективности, а также есть магистерские программы «Энергоэффективность и энергосбережение в электроэнергетических системах» и «Оптимизация развивающихся систем электроснабжения», в ИТМО есть курсы «Промышленная экология и чистое производство», а также «Биоэкономика и управление ресурсами», а в «ЛЭТИ» с 2011 года на кафедре фотоники при поддержке ГК «Роснанотех» функционирует магистерская программа «Солнечная гетероструктурная фотоэнергетика».

Эти университетские программы позволят достигнуть отличных результатов в рамках федерального проекта «Молодые профессионалы (Повышение конкурентоспособности профессионального образования)» национального проекта «Образование», а также обеспечат экономику России высококвалифицированными кадрами, активно развивающими альтернативную энергетику с заботой об экологии.